《Achieving interfacial thermal expansion matching between C/C composites and metal through ultrafast high-temperature shock (UHS)》
Authors:Jingkang Zhang, Yaotian Yan, Zilong Zhang, Yong Xia, Zhenyu Ye, Bin Wang, Peixin Li, Pengcheng Wang, Jinghuang Lin, Hassaan A. Butt, Dmitry V. Krasnikov, Albert G. Nasibulin, Jinchun Tu, Jian Cao, Junlei Qi.
A novel surface modification and joining method utilizing ultrafast high-temperature shock (UHS) has been investigated to achieve interfacial bonding between C/C composites and TC4 alloy by using Joule heating effect. The process involves surface selective oxidation of the C/C composites and subsequent ultrafast joining, both achieved within short time periods of 30 s and 20 s, respectively. Surface selective oxidation created annular gaps on the C/C composite surface which increased the contact area between the filler alloy and the base material, while suppressing the propagation of cracks. Joule heating of the C/C composites induced a non-equilibrium temperature field, which melted the filler alloy and facilitated interfacial joining through heat conduction. Notably, the temperature of TC4 metal (CTE ∼9.5 × 10−6 K−1) was significantly lower than that of the C/C composites (CTE ∼1.5 × 10−6 K−1), thus suppressing the expansion of TC4 near the heterointerface due to the self-limiting effect exerted by the cold end. As a result, the thermal expansion matching was improved and the residual stress in C/C-TC4 heterostructure was relieved. The shear strength of optimal joints reached 31.7 MPa, representing a 2.4 times increase compared to the conventional joining method.